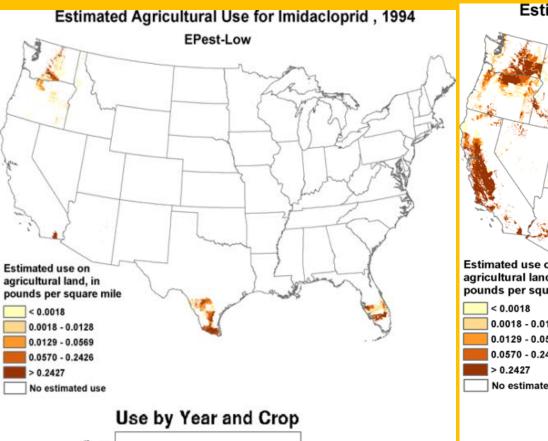
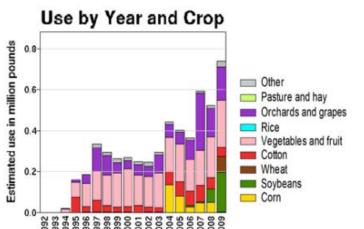
June 2, 2014 Dakota County MasterGardeners Neonicotinoids or neonicotinyl insecticides and bees

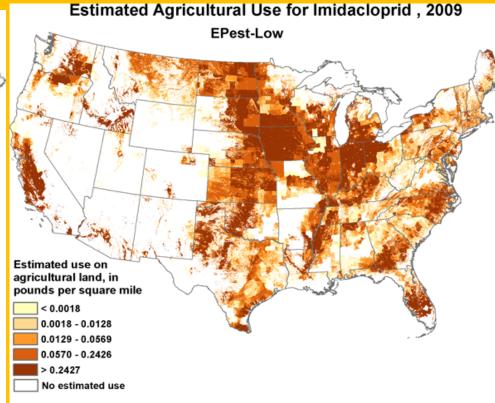
www.entomology.umn.edu/cues

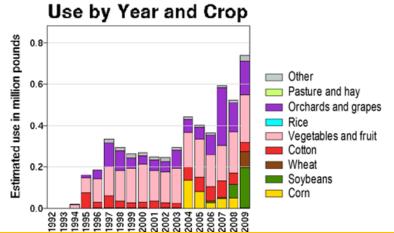
Visit pollinator conservation website:

Bulletins, posters, online workshop, research,




Vera Krischik, Associate Professor, Depart of Entomology, UMinnesota and others


Save the bees by planting flowers and trees


- 1. Use contact insecticides on flowering plants, such as bifenthrin, cyfluthrin, neem, azadirachtin, and spinosad.
- 2. Do not use systemic insecticides.
- 3. Plant a seasonal phenology of native and garden plants for nectar and pollen.
- 4. Only single-flowered plants, not double flowers, provide pollen and nectar.
- 5. Provide overwintering habitat for bees.
- 6. Do not kill queen bees in the spring/fall, they will not sting.
- 7. Understand the different types of bees and wasps so you can conserve bees.

Imidacloprid use in agriculture 1994 and 2009

Neonicotinyl insecticide use in 2011

143/442 US million acres use neonicotinyl insecticides

83+ million acres of corn have neonicotinyl treatedseed and honeybees use corn for pollen

Active ingredient (ai) in lbs					
	imidacloprid	clothianidin	thiamethoxam		
MN	52,048	43,663	68,876		
CA	348,247	3,812	30,687		
US	700,000	1,2000,000	990,000		

Neonicotinyl insecticide toxicity Sublethal dose: more than 20 ppb (2ng/bee) reduces foraging, memory, and navigation


Aspirin 80mg = 80,000microg = 80,000,000ng

Lethal dose	Oral LD ₅₀	Pollen/	Reference
	ng/bee	nectar ppb	
	in 20µL	(ng/.1gbee)	
imidacloprid	3.7-40	37-400	Schmuck et al. 2001, EFSA 2013
clothianidin	3-22	30-220	Iwas et al. 2004, EFSA 2013
dinotefuran	23-47	230-470	EFSA 2013
			EECA 0040

50-300

5-30

thaimethoxam

Causes change

1,973 ppb

Common landscape flower residue

158-192 ppb

Residue level

one sip Altering honey bee behavior

10-30 ppb

6-100 ppb

behavior LD50 imidacloprid LD50 clothianidin

40 ng/bee=400 ppb 43 ng/bee=430 ppb

Residue in pollen and nectar, very few papers

Plant	Imidacloprid ppb	Reference
Sunflower	2 nectar	Schmuck et al. 2001
(treated-seed)	4 pollen	
Pumpkin	4-12 nectar	Dively & Hooks 2010
(soil drench)	37-87 pollen	
Milkweed	1,973-6,000 ppb	Krischik 2013
(soil drench)	nectar	
Eucalyptus tree	550 ppb nectar	Paine et al 2011
(soil drench)		
Horsechestnut tree	5-283 ppb blossom	Bayer, unpulished, Maus et
(trunk injection)		al. 2004b
Serviceberry	1,038- 2,816 ppb	Bayer, unpublished,
(soil drench)	blossom	Doering et al. 2005a,b

Imidacloprid residue in landscape plants

Dose in mg/soil	Dead bees or
	Agastache

25

50

300 1X

600 2X

3 gal

3 gal

Agastache spp. nectar

Asclepias spp. nectar

Esperanza spp. nectar

pollen ppb

0.6b

0.6b

0.5b

2.4a

1.1ab

ppb

ppb

ppb

6b

3**c**

0c

26b

1973b

80c

106c

276b

52b

8c

133b

5265ab | 2950b

175bc

1568bc

21c

30b

36b

95b

332b

What are bees?

- » Most bees are solitary; honey bees, bumble bees, and some sweat bees are social.
- Among the social bees, only honey bee colonies are perennial (survive year to year).
- Solitary and social wasps are sometimes mistaken for bees.
 Social wasps have annual colonies like bumble bees.

Bumble bee colonies in the greenhouse

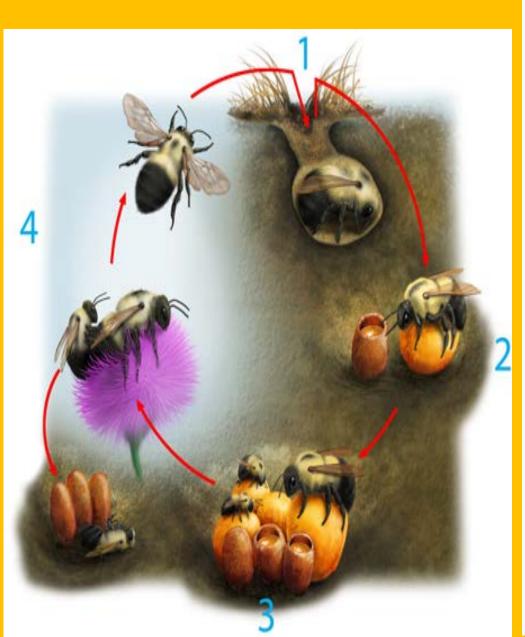
Red-tailed bumble bee (*Bombus ternarius*)

Rob Routledge, Sault College, Bugwood.org

Common eastern bumble bee (*B. impatiens*)

David Cappaert, Michigan State University, Bugwood.org

Bumble Bees, *Bombus* spp., Order Hymenoptera Family Apidae


These large (10 to 23 mm), hairy bees are the only truly social bees native to the United States.

Colonies are annual.

Fecundated queens emerge in spring and begin colonies in the ground.

Queens mate with unrelated males before overwintering in the ground.

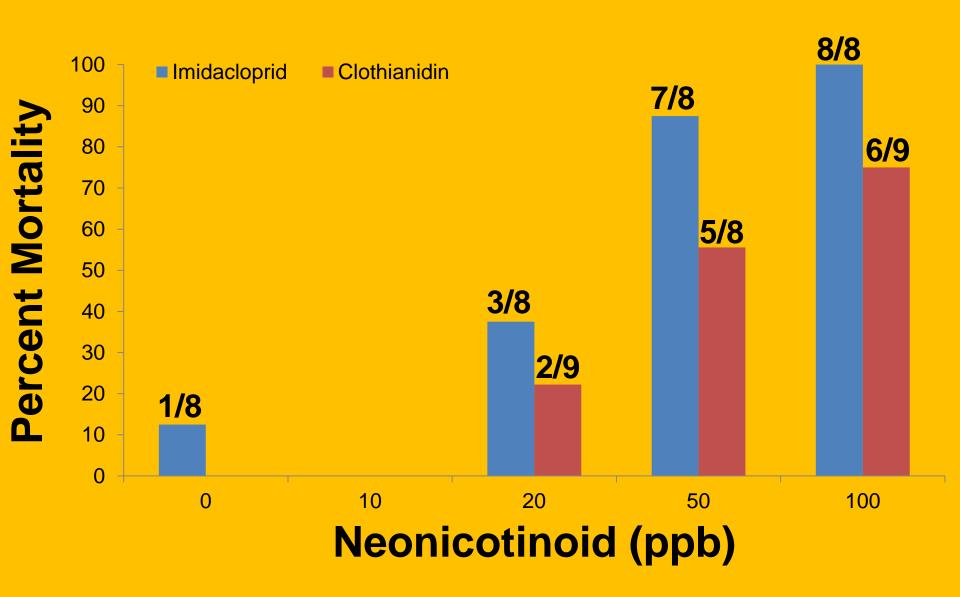
Bumble bee colony life cycle

- 1. A queen emerges from hibernation in spring and finds a nest site, such as an abandoned rodent burrow.
- 2. She creates wax pots to hold nectar and pollen, on which she lays and incubates her eggs.
- 3 In autumn the colony produces new queens and male bees.
- 4. Newly mated queens hibernate and the rest of the bees die.

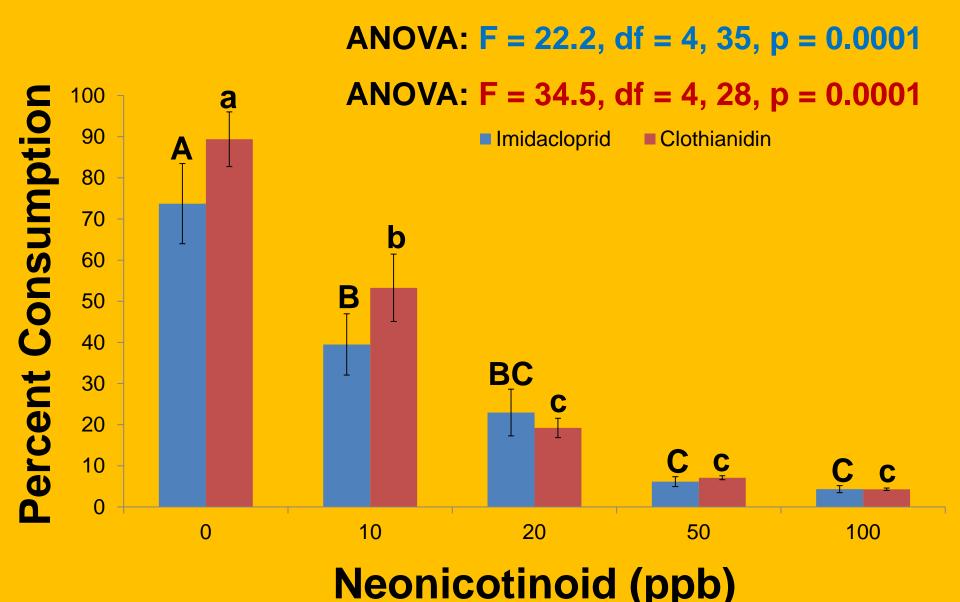
Bumble Bee Colony

Inside a commercial bumble bee colony. Note capped brood cells, shiny "honey pots" full of nectar, and size difference between workers and two large queens (one is newly produced).

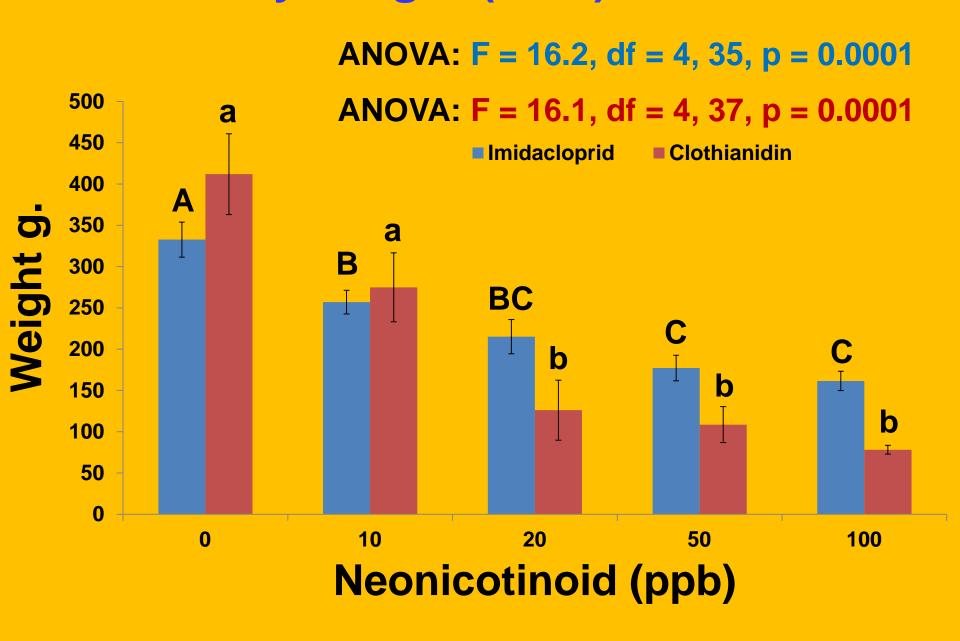
Honey Bee Colony

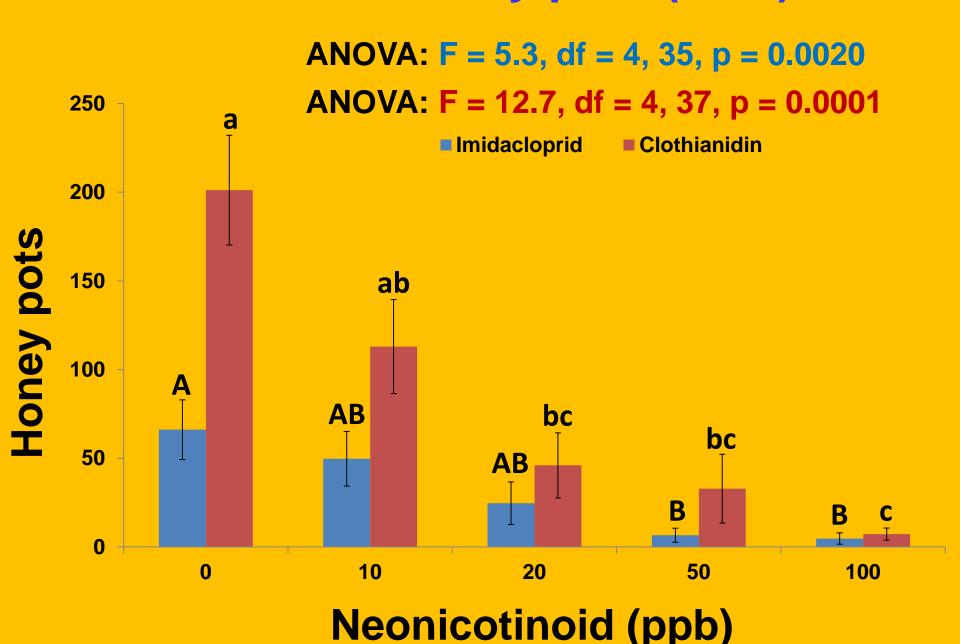

Inside a honey bee colony. Note capped brood cells containing pupae and open brood cells with larvae (unlike bumble bees, who cap cells immediately after laying eggs).

Neonicotinoids and bumblebees


```
    0 ppb = control
    10 ppb = pollen from seed treatments
    20 ppb = NOEC from Bayer,
    but affects behavior
    50 ppb = Field pumpkin study
    100 ppb = Lower level found in landscape plants
```

LD50 imidacloprid 4-40 ng/bee = 40-400 ppb LD50 \clothianidin 4 ng/bee = 40 ppb


Queen mortality (week 8)


Sugar syrup consumption (Week 8)

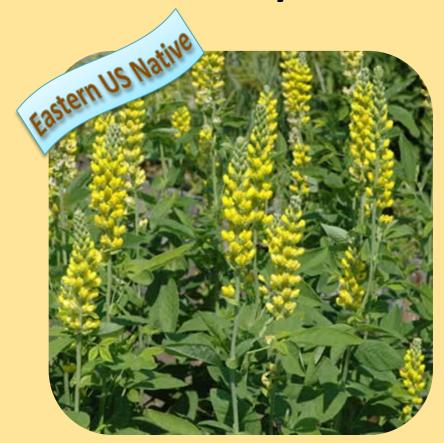
Mean colony weight (final)

Mean number of honey pots (final)

How are plants pollinated?

- Pollen collects on hairs and scales of insects.
- Most bees also have specialized structures called corbiculae or scopae to collect pollen.

Early Season Bloomers



Serviceberry (Amelanchier spp.)

Pussy willow (Salix discolor)

Early Season Bloomers

Carolina lupine (*Thermopsis villosa*)

Siberian squill (Scilla siberica)

Early to Mid Season Bloomers

Wild rose (Rosa species)

Basswood, linden (*Tilia americana*)

Early to Mid-Season Bloomers

Garden sage (Salvia nemorosa 'May Night')

Catmint (Nepeta x faassenii)

Mid Season Bloomers

Purple prairie clover (Petalostemum candida)

Swamp milkweed (Asclepias incarnata)

Mid Season Bloomers

Billard's spiraea (*Spiraea x billardii* 'Triumphans')

Catnip (Nepeta cataria)

Mid to Late Season Bloomers

Anise hyssop (Agastache foeniculum)

Wild bergamot (Monarda fistulosa)

Mid to Late Season Bloomers

Sunflower (*Helianthus* species)

Globethistle (Echinops species)

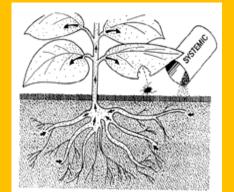
Late Season Bloomers

New England aster (Symphyotrichum novae-angliae)

Goldenrod (Solidago species)

Late Season Bloomers

Korean angelica (Angelia gigas)



Stonecrop (Sedum species)

Contact compared to systemic insecticides

Systemic insecticides

- Uncommon; treated-seed, soil drench, trunk-inject
- Insect must eat leaf, pollen, or nectar to be killed
- Toxicity can least for months to years, unknown
- Flowers that open will have the insecticide in pollen and nectar for months to years, unknown

Systemic insecticides

Systemic

Organophosphates

aldicarb (Temik), oxamyl (Vydate), dimethoate (Cygon)

Neonicotinyl

imidacloprid (Marathon, Merit), clothianidin, thiamethoxam, dinotefuran

Novel mode of action

pymetrozine (Endeavor)

Translaminar, or local, systemic activity

Microbial- abamectin (Avid)

IGR- pyriproxyfen (Distance)

PR- chlorfenapyr (Pylon)

SP-spinosad (Conserve)

OP- acephate (Orthene)

C-Carbofuran (Furadan)

Linden trees: Imidacloprid applied to linden to kill adult JB, but linden is a favorite bee plant

Residue data confirmed dinotefuran. Another bee kill occurred in Hillsboro, OR. Trees were covered in nets and dinotefuran was banned for 6 months until Jan 2014 in Oregon.

Incident

Around 25,000 bumblebees and others were found dead under trees at the Target store in Wilsonville, Oregon on Monday, June 17th. The neonicotinyl insecticide dinotefuran (label Safari) was applied pre-bloom according to label.

Dead in the parking lot, Bombus vosenesenskii