Project title: 2014 Understanding Systemic Insecticides, Dr. Vera Krischik, Depart of Entomology, UMinnesota

In 2009 143/442 million acres in the US use a neonicotinyl insecticide, 83 million acres of corn have seed treatments of neonicotinyls, and honeybees rely on corn for pollen.

Systemic neonicotinyl insecticides (imidacloprid, clothianidin, dinotefuran, and thiamethoxam) are widely used due to low toxicity to humans, but they are very toxic to bees and birds as addressed in two new review papers by the Xerces Society (2012) and American Bird Conservatory (2013). To understand how little kills a bee, let us think of a heart healthy aspirin that is 80 milligrams = 80,000 micrograms= 80,000,000 nanograms (ng). A bee that eats 4-40 ng imidacloprid can be killed and 1- 3 ng reduces the bee's ability to forage, navigate, and return to the hive.

	9			
	Imidacloprid lbs (ai)	Clothianidin lbs (ai)	Thiamethoxam lbs (ai)	
MN	52,048	43,663	68,876	
CA	348,247	3,182	30,687	
US	700,000	1,200,000	990,000	
Estimated Agricultural Use for Imidacloprid, 1994				

Plant	Imidacloprid ppb	Reference
Sunflower	2 nectar	Schmuck et al. 2001
(treated-seed)0.11 mg/seed	4 pollen	
Pumpkin	4 - 12 nectar	Dively & Hooks 2010
(soil drench) 4mg/sgft	37 - 87 pollen	
Milkweed	6000 ppb nectar	Krischik 2013
(soil drench) 300 mg/sgft		
Eucalyptus tree	550 ppb nectar	Paine et al 2011
(soil drench) 67g		
Horsechestnut tree	5-283 blossom	Bayer, unpulished, Maus et al. 2004b
(trunk injection)		
Serviceberry	1,038- 2,816	Bayer, unpublished, Doering et al. 2005a,b
(soil drench)	blossom	
Neonicotinyl chemical	Ld50	Lethal dose in 20µL nectar ppb (ng/.1gbee)
imidacloprid	3.7-40	37-400 EFSA 2012, Bayer says in the field 192 ppb kills a bee
		Bayer says at 20 ppb alterations in behavior and navigation
dinotefuran	23-47	230-470 EFSA 2012
thaimethoxam	5-30	50-300 EFSA 2012
clothianidin	3-22	30-220 EFSA 2012